The NIH MRI study of normal brain development

Brain Development Cooperative Group 1
Alan C. Evans*

Montreal Neurological Institute, McGill University, Department of Neurology and Neurosurgery, 3801 University St., Montreal, H3A 2B4 Canada

Received 28 January 2005; revised 8 July 2005; accepted 14 September 2005
Available online 11 January 2006

Magnetic resonance imaging (MRI) has made it possible to study normal structural and metabolic brain development across age groups. It had been difficult to study infants, children and adolescents with earlier imaging modalities because of safety concerns related to radiation exposure. Hence, relatively little was known about healthy brain development in humans prior to the advent of MRI.

Introduction

In the 1990s, several research groups demonstrating age-related changes in gray matter volumes, white matter volumes, myelination and subcortical measures with MRI in samples of healthy children aged 4–21 years (Filipek et al., 1994; Jernigan and Tallal, 1990; Jernigan et al., 1991; Pfiefferbaum et al., 1994). Subsequently, additional studies have described normal developmental changes in specific brain regions based on samples of children and young adults ranging in size from N = 13 to 176 (Bartzokis et al., 2001; Blanton et al., 2001, 2004; Blatter et al., 1995; Caviness et al., 1996, 1999; Courchesne et al., 2000; DeBellis et al., 2001; Giedd et al., 1996, 1999; Gogtay et al., 2004). They highlight the need for large sample sizes in order to obtain reliable conclusions about the normative range for healthy populations.

Keywords: Pediatric; MRI; Database; Brain behavior; Multi-center

* Corresponding author. Fax: +1 514 398 8948.
E-mail address: alan.evans@mcgill.ca (A.C. Evans).
1 See Appendix A for author list.
Available online on ScienceDirect (www.sciencedirect.com).

1053-8119/S - see front matter © 2005 Elsevier Inc. All rights reserved.
Although a few studies have demonstrated relationships between healthy regional brain structure maturation and specific cognitive abilities, this area of research remains largely untapped (Casey et al., 1997; Sowell et al., 2004b). Significant questions regarding healthy brain development remain. Previously reported studies of self-selected samples, obtained through a variety of media solicitations or samples of convenience, are not representative of U.S. demographics, particularly with respect to race, ethnicity and income. Thus, the generalizability of reported results is limited. Little data have been reported on children younger than age six, a population of particular interest because of rapid brain development during infancy and preschool years. Very few longitudinal studies have been conducted. Most have been limited to analysis of T1-weighted data only. The absence of cross-site collaborations or image acquisition standardization further limits our understanding of brain development and brain–behavior relationships and limits the generalizability or useful application of control data across research laboratories. As yet, no representative, longitudinally acquired database of healthy brain development that combines high quality multi-sequence, multi-modality MR images: anatomical MRI (aMRI), magnetic resonance spectroscopy (MRS) and diffusion tensor imaging (DTI) with comprehensive longitudinal clinical/neurobehavioral assessments is available.

One example of the impact of this knowledge gap can be seen in a recent report of differences in brain morphology between children with attention deficit hyperactivity disorder (ADHD) and healthy controls (Castellanos et al., 2002). This study reported subtle, yet widespread, reductions in regional brain volumes that were generally stable across development with the exception of early reductions in caudate volume which appeared to normalize during adolescence. Despite its utilization of one of the largest normal MRI data sets available (Giedd et al., 1999), this study was limited by a paucity of data for the younger ages, where reliable predictions were not possible. Fewer than 20 healthy male and 10 healthy female children were under 8 years of age in that study. Furthermore, the control data set had restricted socioeconomic representation and (high) IQ range (elevated relative to the ADHD sample). A more complete and representative database of MRI and cognitive/behavioral measures in a demographically diverse sample will greatly increase the power for detecting subtle, yet important, differences in brain developmental trajectories in childhood psychiatric and neurological disorders.

Present study

This study was undertaken in order to establish a public database of pediatric aMRI, MRS and DTI brain scans, for several purposes: (1) to elucidate healthy anatomic and metabolic brain development, providing ranges of normal values and defining key developmental periods; (2) to fill a need for a representative and reliable source of healthy control subject data for studies of childhood disorders and brain diseases to be made available to pediatric researchers and clinicians; (3) to provide data for the construction of healthy developmental growth curves for specific brain structures and metabolites; and (4) to aid the development of image analysis methods and diagnostic tools, e.g., the derivation of developmentally sensitive morphometric or metabolic imaging measures not obtainable with methods developed for adult populations.

A major goal was to recruit a demographically representative healthy sample. In order to meet this goal and to minimize ascertainment biases that can be present in samples of convenience, a population-based sampling method was employed. A sample of healthy infants, children and adolescents demographically representative of the U.S. population has been recruited and characterized. Cognitive, neuropsychological and behavioral measures were acquired to screen or exclude subjects as well as to provide a basis for brain–behavior correlational studies with the imaging data.

Collecting neuroanatomical and clinical/behavioral data from children ranging in age from 7 days to 18.3 years is challenging due to the impracticality of applying a common data acquisition protocol across these ages. Many clinical/behavioral measures are only suitable for a limited age range. Similarly, for MR imaging, the optimal scanning protocol depends upon tissue characteristics and practical considerations which vary with age (subject tolerance, motion). Accordingly, the primary goal of the project, the collection of structural MRI and behavior data, was organized as two “Objectives”. The larger Objective 1 includes children in the age range of 4.6–18.3 years, while the smaller Objective 2 includes children from 7 days to 4.6 years. Although the underlying goals of these Objectives are similar, the protocols for recruitment, screening, behavioral and cognitive characterization, MR scanning and sampling frequency differ substantially. Both Objectives employ a longitudinal study design: Objective 1 children are being scanned at 2-year intervals while Objective 2 children are being scanned at approximately quarterly intervals (Figs. 1, 2).

A comprehensive description of each component of this multifaceted project within a single report would be prohibitively long. Nevertheless, an accurate representation of the overall project context requires that all elements be presented together. This report therefore outlines the overarching rationale and methodologies of the project, with emphasis on Objective 1. Subsequent reports will provide greater detail regarding other individual components (e.g., Objective 2, MRS, DTI) and their results.

Thus far, the project has enrolled a cohort of 433 Objective 1 subjects and 72 Objective 2 subjects and is following these subjects over a 7-year period. Data are collected at six pediatric study centers (PSCs):

- Boston—Children’s Hospital
- Cincinnati—Children’s Hospital Medical Center
- Houston—University of Texas Houston Medical School
- Los Angeles—Neuropsychiatric Institute and Hospital, UCLA
- Philadelphia—Children’s Hospital of Philadelphia (CHOP)
- St. Louis—Washington University.

Informed consent from parents and adult subjects and child assents were obtained for all subjects enrolled at the PSCs. All protocols and procedures were approved by the relevant Institutional Review Board at each PSC and at each coordinating center.

A Clinical Coordinating Center (CCC) at Washington University St. Louis coordinates the clinical/behavioral aspects of the project including: sampling plan and methods; subject recruitment, inclusion/exclusion criteria and screening/assessment protocols; quality control (QC) for the administration of all clinical and behavioral measures. Structural MRI and clinical/behavioral data
are consolidated and analyzed within a purpose-built database at Data Coordinating Center (DCC) at the Montreal Neurological Institute, McGill University. The DCC coordinates the image acquisition protocols, imaging data quality control and image analysis. Diffusion tensor imaging (DTI) data are analyzed at a DTI Processing Center, National Institute of Child Health and Development (NICHD) NIH (DPC). Spectroscopy data are analyzed at a Spectroscopy Processing Center UCLA (SPC). All data, raw and processed, are eventually consolidated at the DCC.

Three separate repeated study cycles for each child allow both longitudinal and cross-sectional analysis. Imaging and clinical/behavioral data are transferred via a web-based network into a central database that allows for (i) secure, encrypted data transfer and automated quality control, (ii) automated large-scale MRI segmentation, (iii) correlation of neuroanatomical and clinical/behavioral variables as 3D statistical maps and (iv) remote interrogation and 3D viewing of database content.

Imaging data included structural MRI (T1-weighted, T2-weighted, proton-density-weighted). A subset of children had additional data acquisitions (T1/T2 relaxometry, DTI, MRS and MRS imaging (MRSSI)). In the following sections, we describe the methodologies for sampling and recruitment, clinical and behavioral assessment, MRI data acquisition, database design, MR segmentation and Data analysis.

Methods

Sampling and recruitment

Population-based sampling

The population-based sampling method used in this study seeks to minimize biases that can be present in samples of convenience in order to maximize the generalizability of the data collected. The sampling plan for each PSC was developed from the available Census 2000 data, which allowed neighborhood demographic variables to be estimated for the corresponding zip codes (so called geocoding). This allowed targeted recruitment and comparison to the general population by reference to geocoded census data. Geocoding further allowed for estimation of demographic information on subjects who decline or were excluded from participation. Recruitment was monitored continuously by the CCC in order to assure that the sample recruited across all PSCs was demographically representative. Regional PSC-specific enrollment targets were employed until approximately 50% of the sample was accrued, at which time the remaining targeted subjects were recruited collectively by all sites. Once specific demographic target goals were reached, those enrollment “cells” were closed.

Recruitment and screening procedures. Names and addresses for households with children in the age range of interest were obtained from a marketing agency (Info U.S.A.). Recruitment and screening proceeded in a multi-stage process, including mailing introductory letters followed by a brief screening phone interview, parental completion of a Childhood Behavior Checklist for the child of interest (CBCL, Achenbach, 2001; Achenbach and Rescorla, 2000) (exclusion a T score ≥ 70 on any clinical subscale).

For those who passed the brief screener, a longer phone “full screening interview” included more detailed health and neurological history and inquiries about most exclusion criteria (see Table 1). If no exclusion criteria were met, this screening interview was passed, the Diagnostic Interview Schedule for Children (C-DISC-4, Shaffer et al., 2000), a structured psychiatric interview, was completed with the parent about the child. Children 11 years of age and older also completed the Diagnostic Predictive Scales (DPS, Lucas et al., 2001) about themselves. If the DPS interview indicated possible diagnoses, it was followed-up with the C-DISC-4 administered to the adolescent (Shaffer et al., 2000). Parents also completed a semi-structured interview covering first-degree family history of psychiatric disorders—the Family Interview for Genetic Studies (FIGS, Initiative NSaBDG, 1992 [MRI modified version, FIGS-MRI]). Families and children who passed screening were invited in for the full-day protocol.

Males and females and right- and left-handed individuals were included. Exclusion criteria included factors which are established or highly suspected to adversely impact healthy brain development or to prohibit completion of the full study protocol, e.g., contraindications for MRI scanning. In uncertain cases, an internal panel, comprised of a subset of the investigators, reviewed relevant data and made the include/exclude decision by simple majority.

Clinical and behavioral assessment

An important aspect of this study is the investigation of correlation between (a) performance on cognitive and behavioral tasks and (b) measures of brain structure and function across development, e.g., between: (1) hand preference and cerebral asymmetries, (2) executive functions assessed with the Cambridge Neuropsychological Test Automated Battery (CANTAB, CeNeS Limited, 1999) and frontal cortical structural features (Luciana, 2003; Luciana and Nelson, 2002; Robbins et al., 1998) and (3) motor dexterity based on Purdue Pegboard (Gardner and Broman, 1979) scores and specific motor cortex volumes or corticospinal white matter densities.

A battery of tests and inventories were selected to assess basic cognitive and behavioral skills over the age range of interest. Preference was given to well standardized, clinically interpretable tests with well-established psychometric properties. Neurological and other behavioral measures, such as those reflecting temperament, personality or behavioral styles, were chosen to be quantitative and capable of capturing normal healthy development variability. Since all components of the study were to be completed typically in one all-day visit, the test battery had to be completed within 2 to 3 h (including breaks) for children of all ages. The test battery, listed in Table 2, samples a wide range of functions/abilities from fine motor skills through higher levels of perceptual and cognitive processing. The measures used change over the wide age range of Objective 1 subjects (4: 6–18: 3 years). Some tests were potentially exclusionary, while others were included for sample characterization and brain–behavior correlation. A pediatric physical (including neurological) examination was used to detect neurological abnormalities for exclusionary purposes, as well as to provide data for correlation with other neurobehavioral and neuroimaging data.

The collection of both physical data from a self-rating Tanner scale (Carskadon and Acebo, 1993; Peterson et al., 1988) and endocrine data (from saliva and urine samples) provided a more complete physiologic profile to correlate with neuroimaging data. Tanner staging (e.g., Tanner, 1962) will be used to discern the effect(s) of physiologic pubertal changes on brain structure and biochemistry. Children also provided two separate 1–3 cm³
samples of saliva and a urine sample which will both be assayed by published radioimmunoassays (RIA) methods for testosterone (male subjects) and estradiol (females) at one PSC (UCLA).

Quality control measures for screening, neurological and behavior evaluations

Quality control (QC) procedures were implemented by the CCC to monitor the administration of all neurobehavioral tests and interviews to assure the uniform application of recruitment procedures and assessment protocols across PSCs. Details are available on the project website (http://www.bic.mni.mcgill.ca/nihpd/info).

MR data acquisition

MRI scanners used were 1.5 T systems from General Electric (GE) or Siemens Medical Systems (Siemens).
MRI protocol for Objective 1

Objective 1 uses MRI for the in vivo characterization of developing brain structure in children aged 4.6–18.3 years. In order to collect data within the time limitations for this age range and allow automated morphometric analysis, 30–45 min of data acquisition was allocated, with 1 mm in-plane resolution, 1–2 mm slice thickness, whole brain coverage and multiple contrasts (T1W, T2W and PDW).

We selected a 3D T1-weighted (T1W) spoiled gradient recalled (SPGR) echo sequence (see Table 3). The primary alternative considered was a 3D magnetization prepared gradient echo sequence (3D MPRAGE); however, following extensive multi-center testing with multiple MRI vendors, the conventional 3D SPGR was found to provide a higher signal-to-noise/contrast-to-noise ratios and more consistent results. The protocol provides 1 mm isotropic data from the entire head. As the priority measure for Objective 1, it was acquired immediately following the localizer scan and, if significant motion artifacts were observed, was immediately repeated. On GE scanners, the maximum number of slices was 124, and hence the slice thickness was increased (~1.5 mm) to give whole head coverage. Sagittal acquisition was chosen, being the most efficient way to obtain complete head coverage.

A dual contrast, proton density- and T2-weighted (PDW and T2W) acquisition provided additional information for automated multi-spectral tissue classification/segmentation. An optimized 2D multislice (2 mm) dual echo fast spin echo (FSE) sequence was used. An oblique axial orientation (parallel to the AC–PC line) was selected, both for potential use of the data within a radiological atlas and for consistency between Objectives 1 and 2.

Not all Objective 1 subjects, particularly the youngest, could tolerate the optimal scanning protocol described above (a ~15-min 3D T1W and ~10-min PDW/T2W scan). In anticipation of this problem, we implemented a fall-back MR protocol that consisted of shorter 2D acquisitions which provides acceptable structural images and continuity with the Objective 2 MR protocol.

A 2D T1W multislice (MS) spin echo (SE) was substituted when motion degraded the 3D T1W scan. Data were collected parallel to the AC–PC line with a 1 x 1 x 3 mm spatial resolution. If the PDW/T2W scan was degraded by motion, slice thickness was increased from 2 mm to 3 mm, reducing scan time and likelihood of motion.

MRI protocol for Objective 2

Because brain development early in life is rapid, MR relaxation rates vary dramatically. Furthermore, the movement problems which occur when scanning very young children dictate short acquisitions. This fast, robust protocol provides data similar to Objective 1, as well as quantitative relaxation data.

The principal component acquires data similar to Objective 1, for image segmentation. A 3D T1W 1 mm isotropic acquisition is unrealistically long for this age group, so a 2D T1W multislice spin echo was a practical compromise. Data were collected parallel to the AC–PC line with a 1 x 1 x 3 mm spatial resolution. The parameters of this sequence are identical to the Objective 1 fall-
back T1W scan (see Table 4). The sequence took less than 5 min and was repeated if degraded by motion artifacts.

The second component acquired PDW/T2W data with the same orientation and spatial resolution as the T1W data. The sequence type (dual contrast FSE) and parameters were otherwise identical to those of the Objective 1 fall-back PDW/T2W scan. The measurement also took <5 min and was repeated if corrupted by motion. While this approach provides PDW/T2W data consistent with Objective 1, a stronger T2 weighting is preferable for very young infants who have longer T2 relaxation times, so a second dual contrast FSE sequence with heavier T2 weighting was added.

The final component acquired quantitative relaxometry. For T1 relaxometry, an inversion recovery sequence developed by Haselgrove et al. (2000) was adopted. Acquisitions were in the oblique axial plane with a slice thickness of 3 mm. In-plane resolution was 2 mm as dictated by single shot (EPI or SSFSE/HASTE) readout. Good quality multi-component T2 relaxometry could only be performed one slice at a time using 32 or more echoes and at least 6 min/slice. Such data provide important information regarding myelination, but the duration prevents its use over the entire brain. We used dual (effective) echo FSE data to estimate T2 for a single compartment model (Table 5).

Magnetic resonance spectroscopy (MRS) protocol
Intermediate-TE single-voxel MRS. Single-voxel in vivo proton MRS data were acquired at 1.5 T in Boston (Obj. 1 and 2), CHOP (Obj. 1) and UCLA (Obj. 1). Due to the limited SNR of proton MRS and extra time required for shimming, only single-voxel MRS acquisitions were performed at the initial visit. An intermediate echo time PRESS acquisition, with voxels measuring $15 \times 15 \times 15$ mm (3.375 cm^3), and 64 signal averages produced acceptable SNR spectra in a scan time of ~3 min per voxel (see Table 6). Four voxels of interest corresponded to the left frontal and parietal white matter, left thalamus and right occipital gray matter. For GE machines, 8 averages of non-water-suppressed
MRS were automatically acquired under the PROBE procedure; for Siemens scanners, non-water-suppressed MRS (NEX = 8, otherwise identical) was acquired in the same voxel. Data processing was performed at the Spectroscopy Processing Center (SPC) at UCLA (see below).

Short-TE MRS imaging (MRSI). Proton MRS imaging (MRSI) was impractical within a single MR session, particularly for Objective 2. Two sites (UCLA and CHOP) undertook separate MRSI studies (1.5 T Siemens Sonata, standard quadrature head coil).

Table 3
Objective 1 MRI acquisition details

<table>
<thead>
<tr>
<th>3D T1-weighted</th>
<th>2D PD/T2-weighted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence</td>
<td>3D RF-spoiled gradient echo</td>
</tr>
<tr>
<td>TR (ms)</td>
<td>22 – 25</td>
</tr>
<tr>
<td>TE (ms)</td>
<td>10 – 11</td>
</tr>
<tr>
<td>Excitation pulse</td>
<td>30°</td>
</tr>
<tr>
<td>Signal averages</td>
<td>1</td>
</tr>
<tr>
<td>TE1 (effective) (ms)</td>
<td>15 – 17</td>
</tr>
<tr>
<td>TE2 (effective) (ms)</td>
<td>5 – 119</td>
</tr>
<tr>
<td>Refocusing pulse</td>
<td>180°</td>
</tr>
<tr>
<td>Orientation</td>
<td>Sagittal</td>
</tr>
<tr>
<td>Thickness, gap (mm)</td>
<td>1, 0</td>
</tr>
<tr>
<td># of slices</td>
<td>Ear to ear</td>
</tr>
<tr>
<td>Field of view (mm)</td>
<td>AP: 256 LR: 160 – 180 (whole head)</td>
</tr>
<tr>
<td>Matrix (mm)</td>
<td>AP: 256 LR: for 1 mm isotropic</td>
</tr>
<tr>
<td>Scan time (min)</td>
<td>15 – 18 (depends on head size)</td>
</tr>
</tbody>
</table>

UCLA. Three pairs of axial–oblique (A–O) MRSI data sets (2D PRESS, TR/TE = 1500/30 ms) were collected (Fig. 7). Each pair included water-suppressed (8 averages, ~11 min) and unsuppressed (1 average, ~4 min) acquisitions, the latter yielding a reference peak for absolute quantitation of MRSI metabolite levels and for eddy current correction. MRSI data were acquired as a 4 × 4 array of 1 × 1 cm² voxels within the following protocol:

- **Scout-I** (set-up –1 min)
- **Structural** (A–O, double spin echo; TR/TE = 3500/17/119 ms; 1 × 1 × 3 mm; ~4 min)
- **Structural-I** (sagittal 3D T1W; TR/TE = 25/11 ms; 1 × 1.2 mm; ~10 min)
- **MRSI-I** anterior cingulate, prefrontal white (~15 min)
- **Structural-II** (repeat of 3D T1W to check for movement; ~10 min)
- **Scout-II** (bilateral frontal; 1 × 1 × 3 mm; ~1 min)
- **MRSI-II** caudate, putamen, thalamus, insula, occipital gray (~15 min)
- **DTI** (~4 min)
- **MRSI-III** dorsolateral prefrontal gray (~15 min).

Table 4
Objective 1 fall-back MRI protocol

<table>
<thead>
<tr>
<th>T1-weighted</th>
<th>2D PD/T2-weighted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence</td>
<td>Spin echo</td>
</tr>
<tr>
<td>TR (ms)</td>
<td>500</td>
</tr>
<tr>
<td>TE (ms)</td>
<td>12</td>
</tr>
<tr>
<td>Flip angle</td>
<td>90°</td>
</tr>
<tr>
<td>Signal averages</td>
<td>1</td>
</tr>
<tr>
<td>TE1 (effective) (ms)</td>
<td>15 – 17</td>
</tr>
<tr>
<td>TE2 (effective) (ms)</td>
<td>5 – 119</td>
</tr>
<tr>
<td>Refocusing pulse</td>
<td>180°</td>
</tr>
<tr>
<td>Orientation</td>
<td>Sagittal</td>
</tr>
<tr>
<td>Thickness, gap (mm)</td>
<td>3, 0</td>
</tr>
<tr>
<td># of slices</td>
<td>Apex to below cerebellum</td>
</tr>
<tr>
<td>Field of view (mm)</td>
<td>AP: 256 LR: 192</td>
</tr>
<tr>
<td>Scan time (min)</td>
<td>3 – 5 (depends on head size)</td>
</tr>
</tbody>
</table>

CHOP. Four MRSI slices parallel to the genu–splenial line and centered at the corpus callosum were selected as the ROI for

Table 5
Objective 2 protocol for relaxometry

<table>
<thead>
<tr>
<th>Quantitative T1</th>
<th>Dual contrast T2W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence</td>
<td>IR-prepared single-shot EPI or single-shot Fast/Turbo spin echo (ETL/Turbo factor 8)</td>
</tr>
<tr>
<td>TR (ms)</td>
<td>3300</td>
</tr>
<tr>
<td>Signal averages</td>
<td>1</td>
</tr>
<tr>
<td>TE1 (effective) (ms)</td>
<td>83</td>
</tr>
<tr>
<td>TE2 (effective) (ms)</td>
<td>165</td>
</tr>
<tr>
<td>Refocusing pulse</td>
<td>180°</td>
</tr>
<tr>
<td>Orientation</td>
<td>Oblique axial (AC–PC) Oblique axial (AC–PC)</td>
</tr>
<tr>
<td>Thickness, gap (mm)</td>
<td>3, 0</td>
</tr>
<tr>
<td># of slices</td>
<td>Apex to below cerebellum Apex to below cerebellum</td>
</tr>
<tr>
<td>Field of view (mm)</td>
<td>AP: 256 LR: 192</td>
</tr>
<tr>
<td>Matrix</td>
<td>AP: 128 LR: 96</td>
</tr>
<tr>
<td>Scan time (min)</td>
<td>10 – 12 (depends on head size)</td>
</tr>
</tbody>
</table>

Table 6
Single-voxel MRS protocol

<table>
<thead>
<tr>
<th>Single voxel</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence</td>
<td>PRESS (customized to GE or Siemens)</td>
</tr>
<tr>
<td>TR (ms)</td>
<td>1500</td>
</tr>
<tr>
<td>TE (ms)</td>
<td>144</td>
</tr>
<tr>
<td>Flip angle</td>
<td>90°</td>
</tr>
<tr>
<td>Signal averages</td>
<td>64</td>
</tr>
<tr>
<td>Voxel size (mm)</td>
<td>15 × 15 × 15</td>
</tr>
<tr>
<td>White matter voxels</td>
<td>Left frontal, left parietal</td>
</tr>
<tr>
<td>Gray matter voxels</td>
<td>Left thalamus, midline occipital</td>
</tr>
<tr>
<td>Scan time (min)</td>
<td>6 – 20</td>
</tr>
</tbody>
</table>
optimal brain coverage. The MR6I box extended anteriorly to the
genu of corpus callosum and posteriorly past the parahippocampal
gyri. The top MR6I slab covered bilateral centrum semiiovale
regions. Three-plane HASTE localizer scans were acquired before
each MRS/MR6I study. Oblique slices were used for optimal and
reproducible slice positioning. Outer volume saturation was used to
minimize lipid contamination from outside the ROI. Five to six 50
mm saturation bands were applied. Total scan time for HASTE
localization, four single-voxel MRS scans and MR6I was ~23 min.

Typical parameters were:
• TR = 1300 ms, TE = 30 ms, 2 signal averages
• Rectangular ROI (8 × 8 × 6 cm typical), in-plane voxel 1 × 1
 cm².
• Four 1.5 cm slices (FOV = 16 × 16 × 12 cm).
• Scan resolutions = 16 (R/L) × 16 (A/P) × 8 (F/H).
• Data size = 1024 with a receiver bandwidth = 1200 Hz.
• Water suppression bandwidth = 50 Hz.

Diffusion tensor (DTI) protocol
This ancillary study collected diffusion tensor data from
children aged from 7 days to 18 years. These data should provide
specific information on white matter maturation and fiber
orientation in the developing brain. DTI data were acquired at
a subset of PSCs (Boston, Cincinnati, Philadelphia, St. Louis)
with a diffusion-encoded multislice spin echo EPI sequence (see
Table 7). To avoid orientation bias, data were acquired on a 3 ×
3 × 3 mm matrix covering the entire brain with straight axial
slices (Fig. 3).

Overall acquisition priorities and ordering
For Objective 1, the most important acquisition was the T1W
3D volume scan. This was repeated if necessary and had to be
successfully completed before proceeding to the PDW/T2W FSE.
For Objective 2, the essential T1W and PDW/T2W acquisitions
were repeated until satisfactorily acquired or the session aborted.
They were followed by T1 relaxometry, DTI, MRS and the second
dual contrast FSE.

Pediatric database
The database was designed to provide:
• Receipt and storage of all data (MRI and clinical/behavioral)
 acquired
• An intuitive interface reflecting the work and data flow
• Interfaces for clinical/behavioral data entry that mimic the
 ‘actual’ test forms
• Immediate, automatic QC of valid data entry, e.g., type, range;
 redundancy checks
• Facilities for ‘manual’ quality control at several stages
• Automatic data transfer (MRI and behavior) between PSCs and
 DCC
• Communication (bug-reporting, documentation, statistics) be-
 tween PSCs and DCC
• Dissemination of data to wider scientific community under pre-
 defined access control.

Storage of MRI data was relatively straightforward with a
limited number of large files per subject. The clinical/behavioral
data were more complex, due to the wide range of data types.
Numerous instruments included in the clinical/behavioral test
battery are third party, commercial packages. These were
configured on each PSC laptop by the DCC. Each test was
implemented as a separate module with real-time scoring
feedback during data entry.

Database architecture
The major components of the system (Fig. 4) are: (i) the PSC
MRI scanner; (ii) a PC/Linux-based study workstation installed at
each PSC, functioning as a data upload gateway to the DCC
database; (iii) a laptop-based test administration system for
clinical/behavioral tests (“laptop”); (iv) the database hardware
and software at the DCC, allowing data entry and access through
pre-defined access mechanisms; (v) the BIC image processing
pipeline; (vi) a data backup system for the DCC database. The
database uses MySQL, an Open Source Database Management
System (http://www.mysql.com). MySQL is a database manage-
ment system that incorporates a relational model for its databases
and supports ANSI SQL (standard querying language). MySQL
was chosen for its robustness, speed, reliability, free distribution
and support. This architecture will support the public access to
the database from July, 2006.

The database had to handle multi-site data acquisition and re-
peated testing of subjects during the study and to assure subject
confidentiality. Task complexity was further increased due to the

<table>
<thead>
<tr>
<th>Table 7</th>
<th>DTI protocol details</th>
<th>Objective 1</th>
<th>Objective 2</th>
</tr>
</thead>
</table>
| Sequence | Diffusion encoded spin
 echo EPI (GE: custom,
 Siemens: EP2D, difft) | | |
| TR (ms) | Minimum 3000 | but 9000 for 60 slices | |
| TE (ms) | Minimum achievable
 with full echo acquisition | | |
| Excitation angle | 90° | | |
| Signal averages | 1 | | |
| h-values | 0.1000 | 0.1000; 0.500 | |
| Diffusion directions | (1 0 1) (−1 0 1) | (1 0 1) (0 1 −1) | |
| # of series acquired | 4 | 6 | |
| # of images/slice | 4 * (1 * b = 0 + 6 * b = 1000) = 28 | 4 * (1 * b = 0 + 6 * b = 1000) + 2 * (1 * b = 0 + 6 * b = 500) = 42 | |
| Orientation | Straight axial | | |
| Thickness, gap (mm) | 3, 0 | | |
| # of slices | 48–60 (from above apex to below cerebellum) | AP = 192, LR = 192 if head fits within 19 cm, else AP = 384, LR = 384 | AP = 64, LR = 64 if head fits within 19 cm, else AP = 128, LR = 128 |
| Field of view (mm) | | | |
| Matrix | | | |
| Scan time (min) | 4–7 | | |
age-dependent protocol for clinical/behavioral measures and repeated MR procedures. The architecture employed three tiers to achieve this:

- **Database Layer**—a relational database (server side)
- **Application Logic Layer**—application logic controls user access and query execution
- **Front–end Layer**—web-based graphical user interface (GUI) (client side).

This enabled applications to be distributed over many physical locations and computing platforms. Clients accessed the database via front–end interfaces (e.g., GUIs) developed to best suit their computing environments. These interfaces can be implemented using virtually any programming language and even other database GUIs.

Database layer. The database core is a relational database with approximately 5000 fields per subject for (i) neurological, psychological, psychiatric and medical data (raw and derived scores) and (ii) MRI raw data, derived image volumes, morphological measures and MRI header data.

Application logic layer. The middle tier consists of user management functions which verify user accounts/access privileges. A series of PHP (server-side), Perl and Java scripts dynamically develop SQL to query the Database, receive and process resulting data sets and present them to the front–end applications for display to the client.

Front–end layer: The front–end mirrors study workflow. Its main menus include:

1. Candidate Recruitment Stage/Menu—initial recruitment of a study candidate
2. Candidate Screening Stage/Menu—pre-visit screening of the candidate
3. Candidate Visit Stage/Menu—actual candidate’s visit to the PSC
4. Approval Stage/Menu—post-visit evaluation of collected data
5. DCC Area—data management, statistics, etc.
6. User Information—user personal and PSC contact information
7. Admin/access control-administration tasks, user registration, etc.

A web-based GUI ensures data and structure flexibility, cross-platform independence and transparent Internet support. It was written primarily in PHP4 (http://www.php.net), complemented by Perl, JavaScript or Java. For secure, encrypted and automatic PSC-DCC data transfer, a combination of Unison (www.cis.upenn.edu/~bcpiercenison) and Secure Shell (SSH, www.ssh.com), was used.

Fig. 4. Network connectivity between PSCs and DCC.
Data transfer procedures

The transfer mechanism (Fig. 4) used a study workstation at each PSC acting as data gateway between PSC and DCC. The study handled three types of data: (a) clinical/behavioral tests administered using paper-and-pencil test forms: data on these forms were entered into the database using a DCC-built web interface. Data entry for the paper-based tests used online pages that resemble those paper forms. Data entry typically resulted in computerized feedback to the PSCs (e.g., out-of-range entries, summary scores), (b) computerized tests (e.g., CANTAB) administered using the study laptop: data were automatically exported in a package to the DCC before undergoing the same quality control as the data arriving via the online interface, (c) MR scans. These were “pushed” from the MRI console to the workstation via DICOM transfer. At regular intervals, batches of MRI files were “pulled” from the workstation to the DCC using a “chron” job and an encrypted DICOM transfer protocol.

Data confidentiality and security

To ensure subject confidentiality and limit unauthorized access, all data were transferred and stored anonymously, identifiable only by two randomly assigned alphanumeric identifiers (PSC-ID and DCC-ID). Only coded subject information was stored at the DCC. All data transfer was encrypted with SSH and SSL. Finally, each user was assigned a user-name and password which determined the level of access (which sections of the database the user can access, what operations can be performed, whether the access is read-only or allows data modification). Five copies of all subject data exist, i.e., source data at PSC, copy on PSC workstation, archived CD copy at PSC, DCC database, archive CD copy at DCC.

Database quality control

Four levels of quality assurance were employed: (a) at data acquisition. Clinical/behavioral data were checked automatically for validity, type and range upon entry via on-screen forms. MRI scans were visually checked at the console, (b) at the PSC, before data transfer to DCC. Clinical/behavioral data were checked for entry completeness. Once all data for an instrument were entered, that instrument was marked as completed, disabling further editing. MRI data sets were qualitatively assessed at the workstation using 3D display software. A QC flag table was updated along with a comment list, providing a complete audit trail of data handling throughout the study, (c) at the DCC, upon receipt of the data at DCC. This verified the integrity and completeness of the received data, i.e., if the received files were correctly transmitted, whether the data set was complete and whether the correct acquisition parameters were used, (d) at the DCC, following integrity check. Clinical/behavioral data were verified against paper forms on a random subset of 1 in 3 candidates. MRI data were assessed both visually and using quantitative indices of image quality.

Two forms of calibration data were collected at each site: (a) The American College of Radiology (ACR) phantom: this phantom contains various compartments which provide information on intensity non-uniformity over a flat intensity field and geometric distortion over a grid pattern (collected approximately monthly), (b) the living phantom: one normal adult volunteer was scanned at all sites using the full MRI acquisition protocol. This database of real brain MRIs provided information on inter-site variability in brain-related measurements such as tissue contrast in raw MRI signal, tissue relaxation properties and derived morphological measurements (collected annually).

Image analysis

Structural MRI

Objective 1 MRI data were segmented using an automated image processing pipeline. However, this automated process has difficulty with Objective 2 data (age 0–4), due to variable tissue contrast and tight sulcal packing. Labor-intensive manual voxel labeling was performed for these cases using the DISPLAY tool. DISPLAY provides capabilities for (i) interactive 3D exploration of image volumes using simultaneous orthogonal planes and surface-rendered representations, (ii) manual labeling of image voxels, (iii) archival/recall of labeled 3D objects such as brain regions, tissue class maps, etc. and (iv) morphological operations such as dilate/erode/open/close. For the automated analysis of Objective 1 data, the methodologies detailed below were used for:

- Correction for image intensity non-uniformity
- Inter-packet registration for multislice T1W and T2W/PDW data
- Inter-modality (i.e., T2W and PDW to T1W) registration
- Identification of brain mask in native space
- Registration of T1W data to stereotaxic space
- Resampling of MRI data into stereotaxic space using tri-cubic resampling
- Identification of an intra-cranial cavity (ICC) mask to remove scalp, muscle, fat.

All image data for each subject were then resident in stereotaxic space, resampled on a 1 mm2 grid. 3D image segmentation then generated the following measures:

- Intra-cranial volume
- Total tissue (GM, WM and CSF) volumes
- Tissue density maps, using both linear and non-linear stereotaxic registration
- GM, WM and CSF volumes within individual lobes in both hemispheres
- Individual structure volumes (caudate, thalamus, superior temporal gyrus, etc.)
- Cortical surface thickness throughout cortex
- Regional (specific gyrus or lobe) cortical thickness means.

The main pipeline elements are described below.

Correction for 3D intensity non-uniformity—N3. N3 is a fully automated 3D technique for inhomogeneity correction. It maximizes the entropy of the intensity histogram to maximize its structure. The method is applicable to any pulse sequence, field strength and scanner (Sled et al., 1998).

Spatial normalization. Population variability in neuroanatomy was assessed using stereotaxic mapping strategies (Collins et al., 1994, 1995). Data were automatically mapped into...
stereotaxic space using ANIMAL (see below) in two ways: (a) linear spatial normalization. A 9-parameter linear transformation such that anatomical variability among individual brains was captured as structure probability maps for each morphological entity. Voxels were anatomically labeled using three different segmentation approaches, and these maps were generated for (i) gray/white/CSF tissue classes (INSECT), (ii) major cortical gyri, cerebellum and deep subcortical nuclei (ANIMAL), (iii) cortical surfaces (CLASP). (b) Non-linear spatial normalization. High-dimensional non-linear warping was employed to map 3D native space into stereotaxic space such that neuroanatomical variability was captured in the resulting deformation fields (Worsley et al., 1996a,b,c).

Tissue classification—INSECT. INSECT (Intensity-Normalized Stereotaxic Environment for Classification of Tissues) takes preprocessed input volumes and generates tissue class (gray, white, CSF, lesion subtype) maps using an artificial neural network classifier (Zijdenbos et al., 2002; Cocosco et al., 2003).

Regional parcellation—ANIMAL. ANIMAL (Collins et al., 1994, 1995; Automated Non-linear Image Matching and Anatomical Labeling) uses a multi-scale approach to deform one MRI volume to match another, previously labeled, MRI volume. Anatomical labels are defined in the new volume by interpolation from the original labels, via the 3D deformation field. ANIMAL can be combined with INSECT to obtain finer detail in the regional segmentation (see Fig. 5).

Automatic surface parameterization—CLASP. CLASP (formerly MSD) is a fully automated iterative procedure for extracting and unfolding human cortex. It fits a 3D mesh model to a target cortical surface in the MRI volume. CLASP employs shape-preserving and surface intersection constraints to minimize a cost function which interpolates the deforming surface between the target surface and the current model surface. Two concentric linked surfaces map the gray/CSF and gray/white interfaces, allowing measurement of cortical thickness in 3D (Fig. 6, MacDonald et al., 2000; Kabani et al., 2001; Kim et al., 2005; Lerch and Evans, 2005).

Problems with surface extraction arise due to the mixing of signal from different tissue types in single MRI voxels, i.e., the partial volume effect (Tohka et al., 2004). These problems are particularly severe in pediatric brain MRI data where sulcal folds are tightly packed, reducing the intra-sulcal CSF and preventing penetration of the deforming surface into the sulcus. Furthermore, the thin pediatric skull results in a close approach of the intense scalp signal to the brain parenchymal signal, causing additional partial volume problems. Finally, the poorer gray–white contrast in pediatric brain MRI presents further challenges for cortical surface extraction algorithms due to imperfect separation of tissue classes. Recently, a Laplacian-based enhancement has improved the surface detection for pediatric brain MRI (Kim et al., 2005; Lerch et al., 2005).

MR spectroscopy

Single voxel. The MRS data were analyzed with the LCModel package (Provencher, 1993, 2001) which reads raw 1H MRS data files to produce fitted spectra with absolute metabolite concentrations. Each MRS voxel was co-registered with its tissue-segmented MRI and the voxel’s volume % of gray matter, white matter and CSF determined. The MRS endpoints were CSF-corrected absolute levels of NAA, Cr and Cho.

MRSI. Data were also post-processed with the LCModel package as for single-voxel MRS. MRSI endpoints were CSF-corrected absolute levels of NAA, Glx, Cr, Cho and ml in left and right anterior cingulate gyri, prefrontal white matter, head of caudate nucleus, putamen, thalamus, insular cortex, parieto-occipital white matter, dorsolateral prefrontal cortex and mesial prefrontal cortex. Fig. 7 shows an example of the MRSI of the anterior cingulate.

Diffusion tensor imaging (DTI)

The DTI processing center (DPC) pipeline involves the following steps.

Sort DWIs and assign correct b-matrix to each image. Since b-matrix information was not available in the DICOM file-header, we used slice position, image number and series number to sort images.

Motion/distortion correction and registration. Patient motion and image distortion induced by eddy currents cause misregistration of the diffusion-weighted images (DWIs) from which the diffusion tensor was to be computed. We used the approach of Rohde et al. (2004), a combined mutual information-based registration technique and spatial transformation model, to correct
simultaneously for both 3D rigid body motion and eddy-current-induced distortion. Images were corrected for EPI-induced distortions by registering them to the structural MRI for each subject. The signal amplitude of each DWI was corrected for size variations produced by the eddy current distortion correction. Images were resampled at 1 mm³ resolution and the b-matrices recalculated in order to account for rotation applied during registration. All spatial transformations were concatenated into a single interpolation step.

Estimate the diffusion tensor. Diffusion tensor maps (Basser et al., 1994) were estimated by fitting the voxel intensity of the corrected DWIs as a function of their corresponding corrected b-matrix. Commonly used tensor fitting approaches, such as the linear least square regression method (Basser et al., 1994), assume signal variability in the DWIs to be affected only by white noise and to be spatially constant. However, spatially varying artifacts, e.g., from subject motion and cardiac pulsation, also contribute to signal variability. Neglecting such artifacts results in erroneous

Fig. 6. Dual cortical surface extraction with CLASP.

Fig. 7. Anterior cingulate MRSI. The MRSI slab (yellow box) was oriented parallel to the genu–splenial line, centered on the midplane of the basal ganglia. The PRESS volume (white box) was sized/positioned to sample the anterior cingulate gyrus and lateral white matter without touching extra-brain tissue (lipid contamination) or crossing the horns of the ventricles. L: sample spectrum from selected voxel (blue).
tensor values, so a robust non-linear tensor fitting algorithm based on iterative re-weighting was employed to identify and remove outliers (Chang et al., 2004).

Compute tensor-derived quantities. The following quantities were produced (Fig. 8):

a) orientationally averaged diffusivity, i.e., Trace \((D)/3\) (Basser et al., 1994)
b) fractional, relative and lattice anisotropy indices (Basser and Pierpaoli, 1996; Pierpaoli and Basser, 1996)
c) eigenvalues of the diffusion tensor (Basser et al., 1994)
d) color-coded maps of fiber orientation (Pajevic and Pierpaoli, 1999)
e) Chi-square map of tensor fitting.

Produce stereotaxic maps of tensor-derived quantities. Stereotaxic DTI maps were obtained by scaling the images described above. Tensor re-orientation strategies (Alexander et al., 2001) were used to resample tensor quantities in stereotaxic space.

Statistical analysis

We investigated the relationship between (i) clinical/behavioral and demographic variables, (ii) neuroanatomical and demographic variables, and (iii) neuroanatomical and clinical/behavioral variables. The morphometric information (3D voxel-based tissue maps, regional volumetrics or vertex-based cortical surface metrics) was correlated with the clinical/behavioral data using both linear and non-linear models. The description below focuses on analysis of structural volume changes over time. However, these models can be equally well applied, with suitable correction for multiple comparisons, to the regression of voxel- or vertex-based structural data against any other demographic or clinical/behavioral variable.

Volume–time analysis

Regional growth was measured according to an accelerated longitudinal design (Harezlak et al., in press), a compromise between full longitudinal and cross-sectional designs. Longitudinal growth curves are fit by non-linear growth curve models (Jenss and Bayley, 1978; Preece and Baines, 1978) containing linear, quadratic and exponential terms to capture the curvilinear features of brain growth during key developmental epochs. Our models contain random child-specific effects that measure deviations from population trends for individual children. We also fit semi-parametric models that are not restricted to the Jenss–Bayley model (Harezlak et al., in press) since evidence from an expanded version of the Giedd et al. (1999) study showed that the quadratic component of the Jenss–Bayley curves biases the fit at early and late ages. The semi-parametric regression models adapt to sharp changes in the data, e.g., growth spurts.

Proper treatment of non-linearities requires complex statistical methods, due to the presence of measurement error, additive rather than linear effects of subject-level covariates and patterned structures in temporal autocorrelations. Our modeling contains both conservative linear models and adaptive non-linear generalized additive models for situations where significant non-linearities exist (Hastie and Tibshirani, 1990).

Voxel-wise analysis

We are employing random field and generalized linear model for treatment of N-dimensional neuroimaging data. The general strategy (Worsley, 1994, 1995a,b; Worsley et al., 1996a; Cao, 1999; Cao and Worsley, 1999) has been applied to PET (Worsley et al., 1992, 1995, 1996b), anatomical MRI (Worsley et al., 1996c, 1999; Chung et al., 2001, 2003) and functional MRI (Worsley and Friston, 1995; Worsley et al., 2002; Liao et al., 2002). This forms the basis of voxel-wise analysis of MRI data and subsequent regression of morphological measures against independent clinical/behavioral measures (Paus et al., 1999, 2001; Giedd et al., 1999; Rapoport et al., 1999).

Results

Identification, screening and exclusions

(For a complete description of the screening procedures, please see website http://www.bic.mni.mcgill.ca/nihpd/info). A total of 35,429 introductory letters were mailed to families over an 18-month enrollment period, and 28,265 were successfully contacted. Approximately 8% of households contacted did not have a child in the age range of interest living in the area, and 13.5% spontaneously identified one or more exclusion factors prior to structured screening. Approximately 35% were not interested in participation. Large numbers of families were not pursued past an early contact as their family or child did not meet specific age, gender or other specified demographic variables to fill a remaining targeted recruitment cell. Overall, approximately 10% of contacted families (\(N = 2861\)) completed initial brief screening interviews, and 75.8%
passed this stage and agreed to receive additional information and complete a parent-rated CBCL on the potential child of interest. 64.4% of these CBCLs were returned with an 85.2% passing rate. Further screening of these 1190 families who completed initial screen steps and returned completed CBCLs yielded the 433 subjects who were enrolled for the full study. Thus, approximately 15.1% of screened families and 1.5% of contacted families were eventually enrolled as subjects in the full Objective I protocol.

Demographics of baseline sample

Age and gender. The Objective 1 cohort contains 433 subjects (224 F, 209 M). At each 1-year age interval, at least 20 subjects have been studied at baseline (Fig. 9). For children less than age 11, at least 30 subjects have been enrolled for each 1-year age range. The over-representation of younger children increases the cross-sectional and longitudinal data for these younger ages, when rapid developmental changes occur.

Ethnicity. The overall racial and ethnic distribution of the 433 enrolled subjects included 11% Black; 12% Hispanic; 1% Native Hawaiian or Native Pacific Islander; 2% American Indian or Alaskan Native; 2% Asian and 72% White. The U.S. Census provides data only for Black, Hispanic and White categories. The comparison of our sample demographics with these Census categories is shown in Table 8.

Socio-economic status (SES). Subjects were drawn from three SES categories (low, medium and high) based on family income after adjustment for cost of living in each PSC location and family size. The U.S. Department of Housing and Urban Development (HUD) has established methods to compare family income levels based on regional costs of living and family size. Regionally specific HUD adjustment of raw family incomes is necessary given the diversity of U.S. regional economic and cost of living indices. Use of raw income numbers alone would underestimate the number of participating families living in low SES circumstances. The details of this HUD adjustment for SES are available at http://www.bic.mni.mcgill.ca/nihpd/info. These adjustments resulted in an increase in the proportion of “low-income” subjects across all racial/ethnic groups in the sample collected at our PSCs (see Table 8). When the HUD-based income categorizations of our sample are compared with the 2000 U.S. Census data, U.S. population subgroups defined according to income and race or ethnicity appear to be well represented in our sample (Chi-square $P = 0.27; df = 8$).

Clinical/behavioral data collection

As of May 2004, 6 months after completion of data collection, 100% data had been successfully transferred through the web interface to the DCC database. Since the database interface provides continuous feedback on data entry errors and summary scores, the overall error rate was low. In 154 subject profiles checked manually against source hard-copy results, each with approximately 1000 entries, a total of 734 input errors were detected, for an input error rate of 0.48%.

MRI

Of the 433 enrolled Objective 1 subjects, 426 completed their MRI studies for the baseline visit, of which 392 (92%) passed QC. 91 of these subjects had T1 fall-back scans, 116 had T2

Table 8

<table>
<thead>
<tr>
<th>Family SES categorization</th>
<th>Total Sample</th>
<th>Total Census</th>
<th>White Sample</th>
<th>White Census</th>
<th>Black Sample</th>
<th>Black Census</th>
<th>Hispanic Sample</th>
<th>Hispanic Census</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>22.9</td>
<td>34.8</td>
<td>13.9</td>
<td>23.9</td>
<td>5.8</td>
<td>5.8</td>
<td>3.2</td>
<td>5.0</td>
</tr>
<tr>
<td>Medium</td>
<td>41.6</td>
<td>37.4</td>
<td>31.9</td>
<td>29.9</td>
<td>3.9</td>
<td>3.8</td>
<td>5.8</td>
<td>3.6</td>
</tr>
<tr>
<td>High</td>
<td>35.5</td>
<td>27.8</td>
<td>30.4</td>
<td>24.6</td>
<td>1.7</td>
<td>1.8</td>
<td>3.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>100.0</td>
<td>76.2</td>
<td>78.4</td>
<td>11.4</td>
<td>11.4</td>
<td>12.4</td>
<td>10.0</td>
</tr>
</tbody>
</table>

a Each race category excludes Hispanic ethnicity.

b Hispanic of any race.
and educationally diverse, with the exception that there is a
bias in the sample based on available zip-code-based U.S.
recruitment bias and allowed for characterization of potential
neurobehavioral development.

Behavioral data collected in the sample will allow brain maturation
sampling plan used here meet these goals. The extensive clinical/
abilities. The design and implementation of the epidemiologic
population and represent a wide range of normal variability in
variety of brain disorders.

We have presented the NIH MRI Study of Normal Brain
Development, summarizing the rationale, implementation and
current data collection status of the project. The project has
collected structural MRI, MRS, DTI and clinical/behavioral data
in 500+ children aged 0–18 according to a uniform acquisition
protocol. The protocol is a mixed cross-sectional/longitudinal
design which will see repeated studies in each child over a 7-year
period. We have successfully concluded the first cycle of data
acquisition. A web-based database has been developed to store
and analyze the study data. This database has also served as a
feedback and status monitoring tool to assist in project
management. All data have been successfully transferred to the
Data Coordinating Center (DCC).

Sampling and recruitment

The full potential of imaging for elucidating healthy brain
development in typically developing children can be realized only
when longitudinal designs are combined with a sampling strategy
designed to minimize bias, represent the diversity of the U.S.
population and represent a wide range of normal variability in
abilities. The design and implementation of the epidemiologic
sampling plan used here meet these goals. The extensive clinical/
behavioral data collected in the sample will allow brain maturation
to be examined in relationship to pubertal status and to cognitive/
neurobehavioral development.

The population-based sampling method reduced potential
recruitment bias and allowed for characterization of potential
bias in the sample based on available zip-code-based U.S.
Census data. Families approached in the general population
were receptive to considering participation in MRI studies of
healthy brain development in their children. The sample
enrolled and characterized is racially, ethnically, economically
and educationally diverse, with the exception that there is a
smaller proportion of lower income Caucasians than would be
expected based on total national demographic data.

As a truly normative database would need a substantially larger
sample than the current resources allowed, we focused on a
pediatric population with healthy brain development. Although the
list of exclusion criteria is quite comprehensive, the sample
characteristics span a wide range of healthy development and
educational, economic, racial and ethnic background. While a large
number of letters and initial contacts were initiated in order to
ascertain the 433 subjects enrolled, many subjects who may have
been otherwise eligible were not pursued because of the need to fill
specific demographic cells.

Clinical/behavioral data

In the first cycle of data collection, a total of 9827 clinical/
behavioral instruments were collected, 9029 from Objective 1
(Table 2) and 798 from Objective 2. Tight QC procedures have
resulted in a rejection rate of <0.5%.

MRI

Quality control has demonstrated smaller than anticipated
failure rates for structural MRI collection, on the order of 10%
for both Objectives. Data analysis has begun for the structural
MRI data. Illustrative results have been presented here; more
complete analysis and discussion of results will appear in
subsequent reports. Most of the early analysis was focused on
structural MRI and morphological measures for correlation with
demographic and clinical/behavioral variables.

Extensive diffusion tensor imaging (DTI) and MR spectro-
scopy (MRS MRSI) data have been collected. These are
presently undergoing analysis at the DPC and SPC. Eventually,
the T1 and T2 relaxometry files will be processed to provide
voxel maps of estimated T1 and T2 values, hence providing
insight into myelination of the developing brain. These maps
will also be correlated with independent variables (age, clinical/
behavioral measures) on a voxel-by-voxel basis.

Analyses are now under way to develop whole and regional
brain developmental growth curves and to characterize the
relationship between regional brain maturation and developmental
changes in cognition and behavior. This study will provide for
initial cross-sectional analyses at baseline and individual time point
data but will also provide a large longitudinally sampled
population to improve our power to detect and quantify regional
growth curve trajectories. A number of investigators have already
suggested the need for such larger longitudinal studies because of
the impressive degree of variability that has been noted thus far in
developmental imaging studies with children and adolescents.
Such longitudinal studies have significantly increased power to
detect longitudinal developmental change in populations with high
heterogeneity, as compared with cross-sectional studies. In addition
to providing a rich database of structural and chemical brain
development, this study will characterize how neural development
relates to medical status, neurological, cognitive, emotional and
behavioral development.

We believe that the knowledge gained, together with the
public release of this database in July 2006, will improve our
understanding of pathophysiology and ultimately result in
earlier, improved diagnostics and treatment for a broad range
of diseases.
Acknowledgment

This project is supported by the National Institute of Child Health and Human Development (Contract N01-HD02-3343), the National Institute on Drug Abuse, the National Institute of Mental Health (Contract N01-MH9-0002), and the National Institute of Neurological Disorders and Stroke (Contracts N01-NS-9-2314, -2315, -2316, -2317, -2319 and -2320).

We wish to acknowledge the important contribution and remarkable spirit of John Haselgrove, Ph.D. (deceased) who contributed enormously to this project.

Appendix A. Brain Development Cooperative Group

The MRI Study of Normal Brain Development is a cooperative study performed by six pediatric study centers in collaboration with a Data Coordinating Center (DCC), a Clinical Coordinating Center (CCC), a Diffusion Tensor Processing Center (DPC), a Spectroscopy Processing Center (SPC) and staff of the National Institute of Child Health and Human Development (NICHD), the National Institute of Mental Health (NIMH), the National Institute for Drug Abuse (NIDA) and the National Institute for Neurological Diseases and Stroke (NINDS), Rockville, Maryland. Investigators from the six pediatric study centers are as follows: Children's Hospital Medical Center of Cincinnati, Principal Investigator William S. Ball, M.D., Co-Investigators Anna Weber Byars, Ph.D., Richard Strawsburg, M.D., Mark Schapiro, M.D., Wendy Bommer, R.N., April Carr, B.Sc., April German, B.A.; Children's Hospital Boston, Principal Investigator Michael J. Rivkin, M.D., Co-Investigators Deborah Weber, Ph.D., Robert Mulkern, Ph.D., Sridhar Vajapeyam, Ph.D., Abigail Chiverton, B.A., Peter Davis, S.B., Julie Koo, S.B., Jacki Marmor, M.A., Christine Mrakotsky, Ph.D., M.A., Richard Robertson, M.D., Gloria McAnulty, Ph.D. Sandra Kosta, B.A., M.A., Heidelise Als, Ph.D.; University of Texas Health Science Center at Houston, Principal Investigator Michael E. Brandt, M.D., Co-Investigators Jack M. Fletcher, Ph.D., Larry A. Kramer, M.D., Co-Investigators Kathleen M. Hebert, Grace Yang, Vinod Aggarwal, M.D., Sushma V. Aggarwal; Washington University in St. Louis, Principal Investigators Kelly Botteron, M.D., Robert C. McKinstry, M.D., Ph.D., Co-Investigators William Warren, Tomoyuki Nishino, M.Sc., C. Robert Almli, Ph.D., Richard Todd, Ph.D., M.D., John Constantino, M.D. Asif Moinuddin, M.D., Tina M. Day, B.A.; University of California Los Angeles (and SPC), Principal Investigator James T. McCracken, M.D., Co-Investigators Jennifer Levitt, M.D., Jeffrey Alger, Ph.D., Joseph O’Neil, Ph.D., Arthur Toga, Ph.D., Robert Asarnow, Ph.D., David Fadale, Laura Heinichen, Cedric Ireland; Children’s Hospital of Philadelphia, Principal Investigator Dah-Jyun Wu, Ph.D., Co-Principal Investigator Edward Moss, Ph.D., Co-Investigators Robert A. Zimmerman, M.D., Brooke Bintliff, B.Sc., Ruth Bradford, Janice Newman, M.B.A. The Principal Investigator of the Data Coordinating Center at McGill University is Alan Evans, Ph.D., Co-Investigators G. Bruce Pike, Ph.D., D. Louis Collins, Ph.D., Gabriel Leonard, Ph.D., Tomas Paus, M.D., Alex Zijdenbos, Ph.D., Rozalia Arnaoutelis, B.Sc, Lawrence Baer, M.Sc., Matt Charlet, Samir Das, B.Sc., Jonathan Harlap, Matthew Kitching, Denise Milovan, M.A., Dario Vins, B.Com., and at Georgetown University, Thomas Zeffiro, M.D., Ph.D. and John Van Meter, Ph.D. Nicholas Lange, Sc.D., Harvard University/McLean Hospital, is a statistical study design and data analysis Co-Investigator to the Data Coordinating Center. The Principal Investigator of the Clinical Coordinating Center at Washington University is Kelly Botteron, M.D., Co-Investigators C. Robert Almli Ph.D., Cheryl Rainey, B.Sc., Stan Henderson M.S., Tomoyuki Nishino, M.S., William Warren, Jennifer L. Edwards M.S.W., Diane Dubois R.N., Karla Smith, Tish Singer and Aaron A. Wilber, M.Sc. The Principal Investigator of the Diffusion Tensor Processing Center at the National Institutes of Health is Carlo Pierpaoli, MD, Ph.D., Co-Investigators Peter J. Basser, Ph.D., Lin-Ching Chang, Sc.D. and Gustavo Rohde. The Principal Collaborators at the National Institutes of Health are Lisa Freund, Ph.D. (NICHID), Judith Rumsey, Ph.D. (NIMH), Laurence Stanford, Ph.D. (NIDA), and from NINDS, Katrina Gwinn-Hardy, M.D. and Giovanna Spinella, M.D.

References

