John E. Richards Home Page

Emberson, L.E., Crosswhite, S., Richards, J.E., & Aslin, R.N. (2017). The lateral occipital cortex (LOC) is selective for object shape, not texture/color, at 6 months. Journal of Neuroscience, 37, 3698-3703; DOI: )

Understanding how the human visual system develops is crucial to understanding the nature and organization of our complex and varied visual representations. However, previous investigations of the development of the visual system using fMRI are largely confined to a subset of the visual system (high-level vision: faces, scenes) and relatively late in visual development (starting at 4-5 years of age). The current study extends our understanding of human visual development by presenting the first systematic investigation of a mid-level visual region (the LOC) in a population much younger than has been investigated in the past 6 month olds. We use fNIRS, an emerging optical method for recording cortical hemodynamics, to perform neuroimaging with this very young population. While previous fNIRS studies have suffered from imprecise neuroanatomical localization, we rely on the most rigorous MR-coregistration of fNIRS data to date to image the infant LOC. We find surprising evidence that at 6 months the LOC has functional specialization that is highly similar to adults. Following Cant and Goodale (2007), we investigate whether the LOC tracks shape information and not other cues to object-identity (e.g., texture/material). This finding extends evidence of LOC specialization from early childhood into infancy and earlier than developmental trajectories of high-level visual regions.